Essential Fats Explained


The essential fatty acids (EFA’s) are just that—essential, meaning they have to come from the diet because the body can’t manufacture them. They might be used as fuel, but they are absolute components of the biological processes that make us work. Only two fatty acid families are vital to humans, omega-6’s and omega-3’s. It’s been shown that their ratio is more important than their volume. The parent fatty acid (FA) in the omega-6 (n-6) line is linoleic acid, abundant in many vegetable oils and ultimately responsible for the biosynthesis of arachidonic acid and related prostaglandins, which are compounds that regulate physiological activities. Alpha-linolenic acid (ALA) is the mother omega-3 (n-3) fatty acid, commonly extracted from seed oils such as flaxseed and hemp, but also found in walnuts. Nearly every aspect of human physiology is affected by essential fats, receptors for which are located in practically every cell.

The n-6 fatty acids have been denigrated in recent years because their excess has been linked to several metabolic upsets. Unbalanced diets are harmful to health, and the n-6’s that overpopulate processed foods and rancid supermarket oils have contributed to myriad health woes. What possibly started out as a 1 to 1 or 2 to 1 ratio of n-6 fatty acids to n-3 fatty acids in the human diet eons ago has become a physiological disaster of imbalance, where the ratio exceeds 10 to 1 in the typical Western diet, and may even approach 20 to 1, or worse, in personal food intake. All fatty acids go through a process of desaturation and elongation to become eminently bioactive compounds. The ultimate products of the process are beneficial to human health, especially if they are made step-by-step by the body and not forced upon it through manufactured meals, unnaturally finished meat products, stale/oxidized vegetable oils, and fossilized eggs, not to mention horrific snack foods. In a healthy body, linoleic acid is converted to gamma-linolenic acid (GLA), which becomes arachidonic acid, from which come the chemicals that control inflammation. After adulthood, the body’s ability to make those conversions is uncertain, so starting with GLA gives us a head start. However, mother linoleic acid is anti-inflammatory in its own right and even a marginal conversion to GLA has been held effective in the management of conditions as diverse as rheumatoid arthritis, eczema and ADD/ADHD.

The n-3 parent, ALA, also must come from diet because humans lack the enzymes necessary to convert it from other fats. But it’s the downstream omega-3’s that get the publicity:  EPA and DHA. Like the n-6’s, the conversion of ALA to EPA and later to DHA is an uncertain proposition in adulthood, which is why most adults use fish oil, a source of pre-made fatty acids. Even in the absence of the requisite conversion co-factors (vitamin B6, Mg, biotin, vitamin B3, vitamin C and Zn), ALA is anti-inflammatory and cardiac friendly (Pan, 2012) (Vedtofte, 2012), with recent scrutiny heralding its potential to inhibit progression of atherosclerosis (Bassett, 2011). The most readily available source of ALA is flaxseed, although chia, the newest kid on the block, is entering the marketplace.

Signs of fatty acid deficiency include a dry scaly rash, impoverished growth in youngsters, increased susceptibility to infections and poor wound healing, but are uncommon. The enzymes that convert the parent fatty acids act preferentially toward the n-3’s. By the time these enzymes deal with the omega-3 fats, some of the omega-6’s have been used for energy, hence the need to get more 6’s than 3’s, in a ratio of about 4 to 1, as evidenced by intensive research done in the 1990’s and early-mid 2000’s (Yahuda, 1993, 1996) (Simopoulos, 2002, 2008). But this ratio is based on the body’s own manufacture of the downstream fatty acids, GLA and arachidonic acid (ARA) along the n-6 line (the latter now included in products designed for infants to insure proper brain development) and EPA/DHA down the n-3 line. Deficiency of essential fatty acids sometimes strikes those suffering from cystic fibrosis or fat malabsorption issues. If patients receive total parenteral nutrition without the inclusion of EFA’s, deficit will appear in about a week or two.

The dry weight of the brain is about 80% lipids, the highest of any organ. The long-chain polyunsaturated fats, especially the n-6 and n-3, are crucial in modulating neural function. They occupy as much as 30% of the brain’s dry weight, making their influence on neural membrane dynamics profound. The shift away from EFA’s in the Western—typically American—diet parallels a rise in mental disorders. The need to address EFA supplementation is real and current, with the inclusion of omega-6 fats a necessity, since GLA, the downstream scion of linoleic acid, has held its own in mental health studies (Vaddadi, 2006). Together, the n-6’s and n-3’s cooperate in a number of cellular functions that affect membrane fluidity, allowing the passage of food and energy into the cell and wastes out. Arachidonic acid is a precursor to signaling molecules in the brain and is a key inflammatory intermediate, while EPA and DHA work to support the cardiovascular system, and the brain and retina.

It is arachidonic acid that supports membrane fluidity in the hippocampus, the part of the brain that directs memory, spatial relations and inhibition (Fukaya, 2007). It is arachidonic acid that protects the brain against oxidative stress and activates proteins in charge of the growth and repair of neurons (Darios, 2006). There is conjecture that ARA supplementation during the early stages of Alzheimer’s disease may slow its progress and stave off symptoms (Schaeffer, 2009). That’s a pretty good promise for something that’s been spurned…for lack of knowledge. Of the n-3’s, EPA may be effective in addressing depressive conditions and behavioral anomalies, besides being able to reduce inflammation (Brind, 2001) (Song, 2007). There had been some concern that EPA adversely affects clotting factors and fibrinogen concentrations, increasing the likelihood of bleeding. That is not so (Finnegan, 2003). It does, however, improve blood viscosity and red blood cell deformity, which allows red cells to adjust their shape to squeeze through narrow blood vessels, like capillaries. Downstream from EPA is DHA, a major fatty acid in sperm, brain phospholipids and the retina of the eye, and found to lower triglycerides. But its claim to fame is its rapid accrual in the developing brain during the third trimester of pregnancy and early postnatal period (Auestad, 2003) (Wainwright, 2000).

You can safely bet the farm that endogenous (made by the body itself) substances are more tightly regulated than exogenous. For example, the arachidonic acid your body makes from linoleic acid is more respectable than that from a haphazardly slaughtered steer, which may or may not be completely lifeless before the abattoir starts to dress it. In fear and pain, the animal releases a torrent of adrenal hormones throughout its flesh, confounding the integrity of its innate fatty acids. Endogenous fatty acids are, therefore, more wholesome.

How do we acquire the parent fatty acids?  You could buy oils that boast omega-6 and omega-3 fatty acid content from the supermarket, but it’s almost guaranteed that the balance will be too far out of whack to deliver a benefit, and the purity of the oils is possibly iffy. In fact, they might upset the apple cart. An overabundance of n-3’s can shut the immune system down for lack of guidance by the n-6 inflammation directors. On the other hand, BodyBio Balance Oil is a blend of organic, cold-pressed sunflower and flaxseed oils that are purposely geared to supply a 4 to 1 ratio of fatty acids that the body needs to initiate the cascade to longer chain fats that present vibrant physiological activity. Just the anti-inflammatory properties of the mother fatty acids, linoleic from sunflower and alpha-linolenic from flax, are enough to warrant using the oils to bolster the body’s well-being and to work out some metabolic kinks. Used to make salad dressings or to dress vegetables in place of butter, Balance Oil has the potential to set straight that which is awry, and the essential fatty acid metabolites can help to clear the brain fog on a hazy day. Cerebral lipids, especially the long-chain fatty acids, have significant direct and indirect activity on cerebral function. Not only do they affect the membranes, but also many are converted to neurally active substances. There is good evidence that mental challenges are related to EFA depletion, the supplementation of which can ameliorate the most defiant state of affairs.